Chapter 7, Optimal Risky Portfolios

Alexander Philipov

Chapter 7 Overview

- The Investment Decision
- Diversification
- **Two Risky Assets**
- Stocks, Bonds, and Bills
- Markowitz Optimization
- Risk Pooling, Risk Sharing, and the Long Run

The Investment Decision

- Top-down process with 3 steps:
 - 1. Capital allocation between the risky portfolio and risk-free asset
 - 2. Asset allocation across broad asset classes
 - 3. Security selection of individual assets within each asset class

Diversification and Porftolio Risk

- Market risk
 - Risk attributable to marketwide risk sources and remains even after extensive diversification
 - Also call systematic or nondiversifiable
- Firm-specific risk
 - Risk that can be eliminated by diversification
 - Also called diversifiable or nonsystematic

^{Chapter 7} ¹7.1 Diversification</sup> Figure 7.1 Porfolio Risk and the Number of Stocks

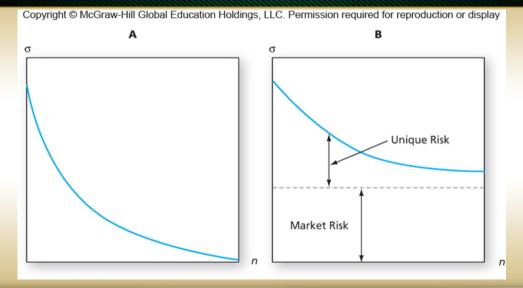
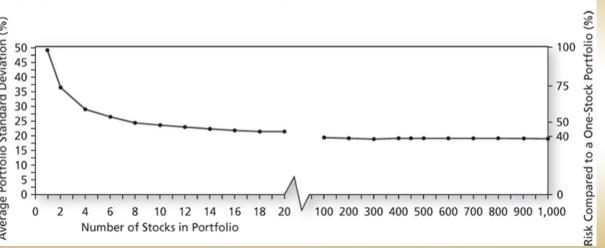


Figure 7.2 Portfolio Diversification

Copyright © McGraw-Hill Global Education Holdings, LLC. Permission required for reproduction or display



Portfolio of Two Risky Assets

- Portfolio risk (variance) depends on the correlation between the returns of the assets in the portfolio
- Covariance and the correlation coefficient provide a measure of the way returns of two assets move together (covary)

Table 7.1 Descriptive Statistics

Table 7.1 Descriptive statistics for two mutual funds		Debt		Equity
	Expected return, E(r)	8%		13%
	Standard deviation, σ	12%		20%
	Covariance, Cov(r _D , r _E)		72	
	Correlation coefficient, ρ_{DE}		.3	0

Spreadsheet available:

http://somfin.gmu.edu/courses/mba706/excel/BKM_10e_Ch07_Two_Security_Model.xls

Portfolio of Two Risky Assets: Return

r

Portfolio return:

$$r_P = W_D r_D + W_E r_E$$

where

- $w_D =$ Bond weight
 - $r_D = Bond return$
- $w_E = Equity weight$
- $r_E = Equity return$
- Portfolio expected return:

$$E(r_P) = w_D E(r_D) + w_E E(r_E)$$

(7.2)

(7.1)

Chapter 7

Portfolio of Two Risky Assets: Risk

Portfolio variance:

$$\sigma_P^2 = w_D^2 \sigma_D^2 + w_E^2 \sigma_E^2 + 2w_D w_E Cov(r_D, r_E)$$
(7.3)

where

 $\sigma_D^2 =$ Bond variance $\sigma_E^2 =$ Equity variance $Cov(r_D, r_E) =$ Covariance of returns for bond and equity

Portfolio of Two Risky Assets: Covariance

Covariance of returns on bond and equity:

 $Cov(r_D, r_E) = \rho_{DE}\sigma_D\sigma_E$

where

 $\rho_{DE} = \text{Correlation coefficient of returns}$ $\sigma_D = \text{Standard deviation of bond returns}$ $\sigma_E = \text{Standard deviation of equity returns}$

Table 7.2 Calculating Portfolio Variance

Copyright © McGraw-Hill Global Education Holdings, LLC. Permission required for reproduction or display

A. Bordered Covari	Table 7.2		
Portfolio Weights WD		WE	Computation of portfolio variance
WD	$Cov(r_D, r_D)$	$Cov(r_D, r_E)$	from the covariance
WE	$Cov(r_E, r_D)$	$Cov(r_E, r_E)$	matrix
B. Border-Multiplie	d Covariance Matrix		
Portfolio Weights	w _D	WE	
WD	$W_D W_D Cov(r_D, r_D)$	$W_D W_E Cov(r_D, r_E)$	
WE	$W_E W_D Cov(r_E, r_D)$	$W_E W_E Cov(r_E, r_E)$	
$w_D + w_E = 1$	$w_D w_D Cov(r_D, r_D) + w_E w_D Cov(r_E, r_D)$	$w_D w_E Cov(r_D, r_E) + w_E w_E Cov(r_E, r_E)$	
Portfolio variance	$w_D w_D Cov(r_D, r_D) + w_E w_D Cov(r_E, r_D) -$	+ $w_D w_E Cov(r_D, r_E) + w_E w_E Cov(r_E, r_E)$	

Concept check

CONCEPT CHECK 7.1

- a. First confirm for yourself that our simple rule for computing the variance of a two-asset portfolio from the bordered covariance matrix is consistent with Equation 7.3.
- *b.* Now consider a portfolio of three funds, *X*, *Y*, *Z*, with weights w_X , w_Y , and w_Z . Show that the portfolio variance is

$$\begin{split} & w_X^2 \sigma_X^2 + w_Y^2 \sigma_Y^2 + w_Z^2 \sigma_Z^2 + 2 w_X w_Y \operatorname{Cov}(r_X, r_Y) \\ & + 2 w_X w_Z \operatorname{Cov}(r_X, r_Z) + 2 w_Y w_Z \operatorname{Cov}(r_Y, r_Z) \end{split}$$

Portfolio of Two Risky Assets: Correlation

• Range of values for ρ_{DE} :

$$-1.0 \le
ho_{DE} \le +1.0$$

- If $\rho = 1.0$, the securities are period positively correlated
- If $\rho = -1.0$, the securities are perfectly negatively correlated

Chapter 7

Portfolio of Two Risky Assets: Correlation

• When $\rho_{DE} = 1$, there is no diversification

$$\sigma_P^2 = w_D^2 \sigma_D^2 + w_E^2 \sigma_E^2 + 2w_D w_E \sigma_D \sigma_E)$$

$$= (w_D \sigma_D + w_E \sigma_E)^2$$
(7.7)
(7.8)

$$\sigma_P = \mathbf{W}_D \sigma_D + \mathbf{W}_E \sigma_E \tag{7.9}$$

σ_P is a weighted average of component standard deviations

• When $\rho_{DE} = -1$, there is potential for perfect hedge

$$\sigma_P^2 = (w_D \sigma_D - w_E \sigma_E)^2 \tag{7.10}$$

solve for $(w_D \sigma_D - w_E \sigma_E) = 0$:

$$w_E = \frac{\sigma_D}{\sigma_D + \sigma_E} = 1 - w_D \tag{7.12}$$

slide 14 of 57

Example 7.1

Using data from Table 7.1:

$$egin{aligned} \Xi(r_P) &= 8 w_D + 13 w_D \ \sigma_P^2 &= 12^2 w_D^2 + 20^2 w_E^2 + 2 imes 12 imes 20 imes w_D w_E \ &= 144 w_D^2 + 400 w_E^2 + 144 w_D w_E \ \sigma_P &= \sqrt{\sigma_P^2} \end{aligned}$$

Experiment with different proportions of w_D and w_E. See Table 7.3 on next slide.

Chapter 7

Table 7.3

Copyright © McGraw-Hill Global Education Holdings, LLC. Permission required for reproduction or display

			Portfolio S	Portfolio Standard Deviation for Given Correlation			
WD	WE	$E(r_{P})$	$\rho = -1$	ho=0	$\rho = .30$	$\rho = 1$	
0.00	1.00	13.00	20.00	20.00	20.00	20.00	
0.10	0.90	12.50	16.80	18.04	18.40	19.20	
0.20	0.80	12.00	13.60	16.18	16.88	18.40	
0.30	0.70	11.50	10.40	14.46	15.47	17.60	
0.40	0.60	11.00	7.20	12.92	14.20	16.80	
0.50	0.50	10.50	4.00	11.66	13.11	16.00	
0.60	0.40	10.00	0.80	10.76	12.26	15.20	
0.70	0.30	9.50	2.40	10.32	11.70	14.40	
0.80	0.20	9.00	5.60	10.40	11.45	13.60	
0.90	0.10	8.50	8.80	10.98	11.56	12.80	
1.00	0.00	8.00	12.00	12.00	12.00	12.00	
			Minimum Variance Portfolio				
		WD	0.6250	0.7353	0.8200	_	
		WE	0.3750	0.2647	0.1800	_	
		$E(r_P)$	9.8750	9.3235	8.9000	_	
		σ_{ρ}	0.0000	10.2899	11.4473	_	

Table 7.3

Expected return and standard deviation with various correlation coefficients

Figure 7.3 Portfolio Expected Return

Chapter 7

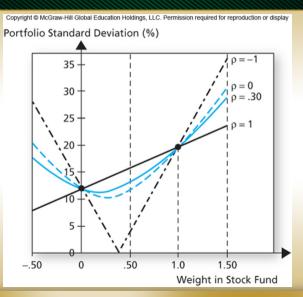
7.2 Two Risky Assets



slide 17 of 57

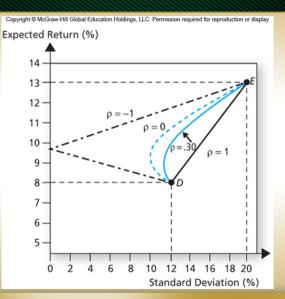
Figure 7.4 Portfolio Standard Deviation

Chapter 7



slide 18 of 57

Chapter 7 ¹7.2 Two Risky Assets</sup> Figure 7.5 Expected Return As a Function of SD



slide 19 of 57

The Minimum Variance Portfolio

- The minimum variance portfolio is the portfolio composed of the risky assets that has the smallest standard deviation; the portfolio with least risk
- ► For the two-asset case the weights of the min-var portfolio are:

$$w_D^{min} = \frac{\sigma_E^2 - Cov(r_D, r_E)}{\sigma_D^2 + \sigma_E^2 - 2Cov(r_D, r_E)} \qquad w_E^{min} = 1 - w_D^{min}$$

- The amount of possible risk reduction through diversification depends on the correlation:
 - If $\rho = +1.0$, no risk reduction is possible
 - If $\rho = 0$, σ_P may be less than the standard deviation of either component asset
 - If $\rho = -1.0$, a riskless hedge is possible

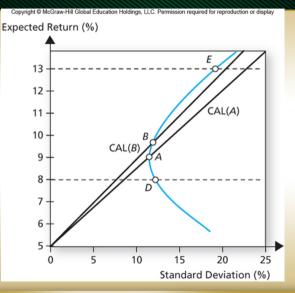
Concept check

CONCEPT CHECK 7.2

Compute and draw the portfolio opportunity set for the debt and equity funds when the correlation coefficient between them is $\rho = .25$.

Figure 7.6 The Opportunity Set with Stocks and Bonds

Chapter 7



The Sharpe Ratio

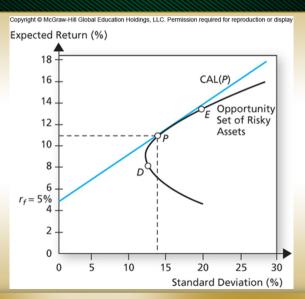
- Maximize the slope of the CAL for any possible portfolio, P
- The objective function is the slope:

$$S = \frac{E(r_P) - r_f}{\sigma_P}$$

The slope is also the Sharpe ratio

Figure 7.7 Optimal Risky Portfolio

Chapter 7



slide 24 of 57

Chapter 7

 7.3 Stocks, Bonds, and Bills

Optimal Risky Portfolio Problem

$$\max_{w_i} S_P = \frac{E(r_P) - r_i}{\sigma_P}$$

$$w_{D} = \frac{E(R_{D})\sigma_{E}^{2} - E(R_{E})Cov(R_{D}, R_{E})}{E(R_{D})\sigma_{E}^{2} + E(R_{E})\sigma_{D}^{2} - [E(R_{D}) + E(R_{E})]Cov(R_{D}, R_{E})}$$
(7.13)
$$w_{E} = 1 - w_{D}$$

Example 7.2 Optimal Risky Portfolio

Using our data, the optimal risky portfolio is:

$$w_D = \frac{(8-5)400 - (13-5)72}{(8-5)400 + (13-5)144 - (8-5+13-5)72} = 0.40$$

$$w_E = 1 - 0.40 = 0.60$$

giving an expected return and standard deviation:

$$E(r_P) = (0.4 \times 8) + (0.6 \times 13) = 11\%$$

$$\sigma_P = \sqrt{(0.4^2 \times 144) + (0.6^2 \times 400) + (2 \times 0.4 \times 0.6 \times 72)} = 14.2\%$$

and a slope of the CAL(P):

Chapter 7

Stocks Bonds

$$S_P = \frac{11-5}{14.2} = 0.42$$

Chapter

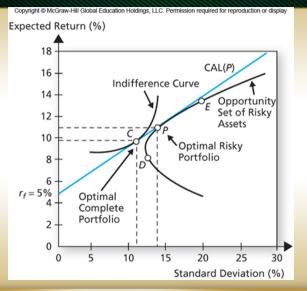
Now that asset allocation is decided, we can find each investor's optimal capital allocation. An investor with a coefficient of risk aversion A = 4 would take a position in portfolio P (note the use of decimals):

$$y = \frac{E(r_P) - r_f}{A\sigma_P^2} = \frac{0.11 - 0.05}{4 \times 0.142^2} = 0.7439$$
(7.14)

Thus the investor will invest 74.39% of his or her wealth in portfolio P and 25.61% in T-bills. Portfolio P consists of 40% in bonds, so the fraction of wealth in bonds will be $y_{W_D} = 0.4 \times 0.7439 = 0.2976$, or 29.76%. Similarly, the investment in stocks will be $y_{W_E} = 0.6 \times 0.7439 = 0.4463$, or 44.63%. The graphical solution of this asset allocation problem is in Figs 7.8 and 7.9.

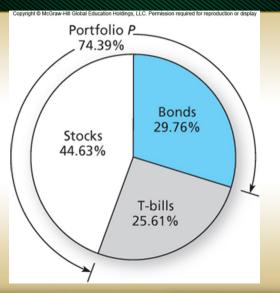
Bonds, Figure 7.8 Determining Overall Optimal Portfolio

Chapter 7



^{-7.3} Stocks, Bonds, Figure 7.9 The Proportions of the Optimal Complete Portfolio

Chapter 7

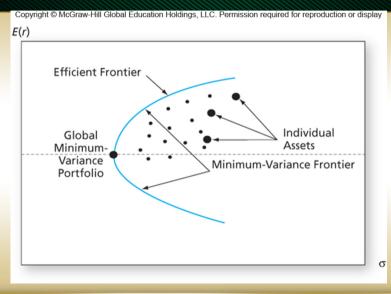


Markowitz Portfolio Optimization Model

- Security selection
 - ► The first step is to determine the risk-return opportunities available
 - All portfolios that lie on the minimum-variance frontier from the global minimum-variance portfolio and upward provide the best risk-return combinations

^{7.4} Markowitz Figure 7.10 The Minimum-Variance Frontier of Risky Assets

Chapter 7



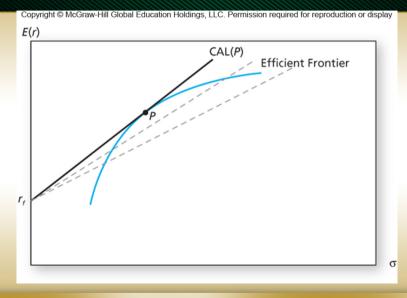
slide 31 of 57

Markowitz Portfolio Optimization Model

- Search for the CAL with the highest reward-to-variability ratio
- ► Everyone invests in *P*, regardless of their degree of risk aversion
 - More risk averse investors put more in the risk-free asset
 - Less risk averse investors put more in P

^{17.4} Markowitz Figure 7.11 Efficient Frontier of Risky Assets with the Optimal CAL

Chapter 7



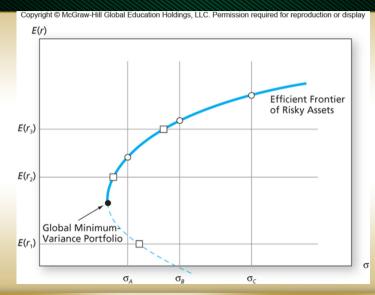
slide 33 of 57

Markowitz Portfolio Optimization Model

- Capital Allocation and the Separation Property
 - Portfolio choice problem may be separated into two independent tasks
 - Determination of the optimal risky portfolio is purely technical
 - Allocation of the complete portfolio to risk-free versus the risky portfolio depends on personal preference

Chapter 7

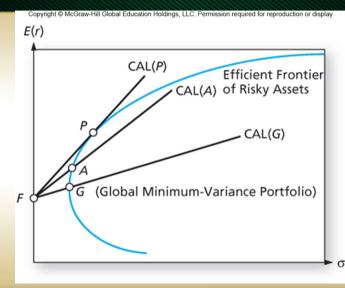
Figure 7.12 The Efficient Portfolio Set



slide 35 of 57

^{17.4} Markowitz Optimization Figure 7.13 CAL with Various Portfolios from the Efficient Set

Chapter 7



The Power of Diversification

$$\sigma_P^2 = \sum_{i=1}^n \sum_{j=1}^n w_i w_j Cov(r_i, r_j)$$
(7.16)

We can separate into average variance and average covariance. To simplify, assume equal weights:

$$=\frac{1}{n}\sum_{i=1}^{n}\frac{1}{n}\sigma_{i}^{2}+\sum_{i=1}^{n}\sum_{\substack{j=1\\j\neq i}}^{n}\frac{1}{n^{2}}Cov(r_{i},r_{j})$$
(7.17)

and we can express portfolio variance as:

Chapter

$$\sigma_P^2 = \frac{1}{n}\bar{\sigma}^2 + \frac{n-1}{n}\overline{Cov}$$

(7.20)

^{7.4} Markowitz Table 7.4 Risk Reduction of Equally Weighted Portfolios

Table 7.4			ρ:	$\rho = 0$		$\rho = .40$		
Risk reduction of equally weighted portfolios in correlated and	Universe Size <i>n</i>	Portfolio Weights w = 1/n (%)	Standard Deviation (%)	Reduction in σ	Standard Deviation (%)	Reduction in σ		
uncorrelated	1	100	50.00	14.64	50.00	8.17		
universes	2	50	35.36		41.83			
	5	20	22.36	1.95	36.06	0.70		
	6	16.67	20.41		35.36			
	10	10	15.81	0.73	33.91	0.20		
	11	9.09	15.08		33.71			
	20	5	11.18	0.27	32.79	0.06		
	21	4.76	10.91		32.73			
	100	1	5.00	0.02	31.86	0.00		
	101	0.99	4.98		31.86			

The Power of Diversification

• Further simplify, same standard deviation across all stocks, σ :

$$\sigma_P^2 = \frac{1}{n}\sigma^2 + \frac{n-1}{n}\rho\sigma^2$$
 (7.21)

- Portfolio variance can be driven to zero if the average covariance is zero (only firm specific risk)
- The irreducible risk of a diversified portfolio depends on the covariance of the returns, which is a function of the systematic factors in the economy

Markowitz Portfolio Optimization Model

- Optimal Portfolios and Nonnormal Returns
 - Fat-tailed distributions can result in extreme values of VaR and ES and encourage smaller allocations to the risky portfolio
 - If other portfolios provide sufficiently better VaR and ES values than the mean-variance efficient portfolio, we may prefer these when faced with fat-tailed distributions

Risk Pooling and the Insurance Principle

- Risk pooling
 - Merging uncorrelated, risky projects as a means to reduce risk
 - It increases the scale of the risky investment by adding additional uncorrelated assets
- ► The insurance principle
 - Risk increases less than proportionally to the number of policies when the policies are uncorrelated
 - Sharpe ratio increases

-7.5 Risk Pooling, Risk Sharing, & the Long-Run

Risk pooling portfolio, R_Z

$$\begin{split} R_{Z} &= yR + yR + (1 - 2y) = 2yR & (\text{double } R_{P}) \\ \sigma_{Z}^{2} &= y^{2}\sigma^{2} + y^{2}\sigma^{2} + 0 = 2y^{2}\sigma^{2} & (\text{double the variance of } P) \\ \sigma_{Z} &= \sqrt{\sigma_{Z}^{2}} = y\sigma\sqrt{2} & (\sqrt{2} = 1.41 \times \text{ s.d. of } P) \\ S_{Z} &= R_{Z}/\sigma_{Z} = 2yR/(y\sigma\sqrt{2}) = \sqrt{2}R/\sigma & (\sqrt{2} = 1.41 \times \text{ Sharpe ratio of } P) \end{split}$$

7.5 Risk Pooling, Risk Sharing, & the Long-Run

Risk Sharing

- As risky assets are added to the portfolio, a portion of the pool is sold to maintain a risky portfolio of fixed size
- ► Risk sharing combined with risk pooling is the key to the insurance industry
- True diversification means spreading a portfolio of fixed size across many assets, not merely adding more risky bets to an ever-growing risky portfolio

-7.5 Risk Pooling, Risk Sharing, & the Long-Run

Risk sharing portfolio, R_V

$$\begin{aligned} R_{Z} &= yR + yR + (1 - 2y) = 2yR \\ \sigma_{Z}^{2} &= y^{2}\sigma^{2} + y^{2}\sigma^{2} + 0 = 2y^{2}\sigma^{2} \\ \sigma_{Z} &= \sqrt{\sigma_{Z}^{2}} = y\sigma\sqrt{2} \\ \sigma_{Z} &= \sqrt{\sigma_{Z}^{2}} = y\sigma\sqrt{2} \\ S_{Z} &= R_{Z}/\sigma_{Z} = 2yR/(y\sigma\sqrt{2}) = \sqrt{2}R/\sigma \end{aligned}$$

$$\begin{aligned} R_{V} &= 2(y/2)R = yR \\ \sigma_{V}^{2} &= 2(y/2)^{2}\sigma^{2} = y^{2}\sigma^{2}/2 \\ \sigma_{V} &= \sqrt{\sigma_{V}^{2}} = y\sigma/\sqrt{2} \\ S_{V} &= R_{V}/\sigma_{V} = \sqrt{2}R/\sigma \end{aligned}$$

-7.5 Risk Pooling, Risk Sharing, & the Long-Run

Investment for the Long Run

- Long-Term Strategy
 - Invest in the risky portfolio for 2 years
 - Long-term strategy is riskier
 - Risk can be reduced by selling some of the risky assets in year 2
 - "Time diversification" is not true diversification

- Short-Term Strategy
 - Invest in the risky portfolio for 1 year and in the risk-free asset for the second year

7.5 Risk Pooling, Risk Sharing, & the Long-Run

Spread risky budget over two periods

1. Invest the whole budget at risk for one period, and then withdraw the entire proceeds, placing them in a risk-free asset in the other period. Because you are invested in the risky asset for only 1 year, the risk premium over the whole investment period is *R*, the 2-year SD is σ , and the 2-year Sharpe ratio is $S = R/\sigma$.

7.5 Risk Pooling, Risk Sharing, & the Long-Run

Spread risky budget over two periods

2. Invest the whole budget in the risky asset for both periods. The 2-year risk premium is 2*R* (assuming continuously compounded rates), the 2-year variance is $2\sigma^2$, the 2-year SD is $\sigma\sqrt{2}$, and the 2-year Sharpe ratio is $SR = R\sqrt{2}/\sigma$. This is analogous to risk pooling, taking two "bets" on the risky portfolio instead of one (as in Strategy 1).

−7.5 Risk Pooling, Risk Sharing, & the Long-Run

Spread risky budget over two periods

3. Invest half the investment budget in the risky position in each of two periods, placing the remainder of funds in the risk-free asset. The 2-year risk premium is *R*, the 2-year variance is $2(1/2\sigma)^2 = \sigma^2/2$, the SD is $\sigma/\sqrt{2}$ and the Sharpe ratio is $SR = R\sqrt{2}/\sigma$. This is analogous to risk sharing, taking a fractional position in each year's investment return.

7.5 Risk Pooling, Risk Sharing, & the Long-Run

Spreadsheet 7.B1

	А	В	С	D	E	F	G
1							
2			Sce	nario rates of re	turn		
3	Scenario	Probability	r _D (i)	r _D (i) + 0.03	0.4*r _D (i)		
4	1	0.14	-0.10	-0.07	-0.040		
5	2	0.36	0.00	0.03	0.000		
6	3	0.30	0.10	0.13	0.040		
7	4	0.20	0.32	0.35	0.128		
8		Mean	0.080	0.110	0.032		
9		Cell C8	=SUMPRO	DUCT(\$B\$4:\$B\$	7,C4:C7)		
10							
11							
12							

7.5 Risk Pooling, Risk Shar ing, & the Long-Run

Spreadsheet 7.B2

	н	1	J	к	L
1					
2			Scenario rat	tes of return	Portfolio return
3	Scenario	Probability	r _D (i)	r _E (i)	0.4*r _D (i)+0.6*r _E (i)
4	1	0.14	-0.10	-0.35	-0.2500
5	2	0.36	0.00	0.20	0.1200
6	3	0.30	0.10	0.45	0.3100
7	4	0.20	0.32	-0.19	0.0140
8		Mean	0.08	0.12	0.1040
9		Cell L4	=0.4*J4+0.6*K4		
10		Cell L8	=SUMPRODUCT(\$I	I\$4:\$I\$7,L4:L7)	
11					
12					

7.5 Risk Pooling, Risk Sharing, & the Long-Run

Spreadsheet 7.B3

	А	В	С	D	E	F	G
13							
14			Sce	nario rates of re	turn		
15	Scenario	Probability	r _D (i)	r _D (i) + 0.03	0.4*r _D (i)		
16	1	0.14	-0.10	-0.07	-0.040		
17	2	0.36	0.00	0.03	0.000		
18	3	0.30	0.10	0.13	0.040		
19	4	0.20	0.32	0.35	0.128		
20		Mean	0.0800	0.1100	0.0240		
21		Variance	0.0185	0.0185	0.0034		
22		SD	0.1359	0.1359	0.0584		
23	Cell C21 =S	SUMPRODUCT(\$E					
24	Cell C22 =C	21^0.5					

-7.5 Risk Pooling, Risk Shar ing, & the Long-Run

Spreadsheet 7.B4

	А	В	С	D	E	F	G	н
1		Rates of Return			Deviation from Mean			Product of
2	Probability	Bonds	Stocks		Bonds	Stocks		Deviations
3	0.25	-2	30		-8	20		-160
4	0.50	6	10		0	0		0
5	0.25	14	-10		8	-20		-160
6	Mean:	6	10		0	0		-80

7.5 Risk Pooling, Risk Shar ing, & the Long-Run

Spreadsheet 7.B5

	н	I.	J	к	L	м
13						
14			Scenario ra	tes of return		
15	Scenario	Probability	r _D (i)	r _E (i)		
16	1	0.14	-0.10	-0.35		
17	2	0.36	0.00	0.20		
18	3	0.30	0.10	0.45		
19	4	0.20	0.32	-0.19		
20		Mean	0.08	0.12		
21		SD	0.1359	0.2918		
22		Covariance	-0.0034			
23		Correlation	-0.0847			
24	Cell J22	=SUMPRODUCT(I1	16:I19,J16:J19,K16:	K19)–J20*K20		
25	Cell J23	=J22/(J21*K21)				

-7.5 Risk Pooling, Risk Sharing, & the Long-Run

Spreadsheet 7.B6

	А	В	С	D	E	F	G
25							
26							
27							
28			Scenario rat	es of return	Portfolio return		
29	Scenario	Probability	r _D (i)	r _E (i)	0.4*r _D (i)+0.6r _E (i)		
30	1	0.14	-0.10	-0.35	-0.25		
31	2	0.36	0.00	0.20	0.12		
32	3	0.30	0.10	0.45	0.31		
33	4	0.20	0.32	-0.19	0.014		
34		Mean	0.08	0.12	0.1040		
35		SD	0.1359	0.2918	0.1788		
36		Covariance	-0.0034		SD: 0.1788		
37		Correlation	-0.0847				
38	Cell E35 =SUM	PRODUCT(B30:B	33,E30:E33,E30:I	E33)-E34^2)^0.5			
39	Cell E36 =(0.4*0	C35)^2+(0.6*D35)	^2+2*0.4*0.6*C36	6)^0.5			

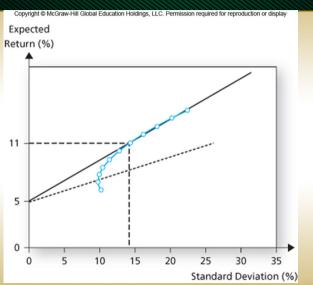
└─7.5 Risk Pooling, Risk Sharing, & the Long-Run

Figure 7.1U

	A	В	С	D	E	F
1	Asset Allocati	on Analysis: R	isk and Return			
2		Expected	Standard	Correlation		
3		Return	Deviation	Coefficient	Covariance	
4	Security 1	0.08	0.12	0.3	0.0072	
5	Security 2	0.13	0.2			
6	T-Bill	0.05	0			
7						
8	Weight	Weight		Expected	Standard	Reward to
9	Security 1	Security 2		Return	Deviation	Volatility
10	1	0		0.08000	0.12000	0.25000
11	0.9	0.1		0.08500	0.11559	0.30281
12	0.8	0.2		0.09000	0.11454	0.34922
13	0.7	0.3		0.09500	0.11696	0.38474
14	0.6	0.4		0.10000	0.12264	0.40771

-7.5 Risk Pooling, Risk Sharing, & the Long-Run

Figure 7.2U



└─7.5 Risk Pooling, Risk Sharing, & the Long-Run

Table 7.3U

	А	В	С	D	E	F				
1	Efficient Frontier for World Equity Benchmark Securities (WEBS)									
2										
3		Mean	Standard							
4	WEBS	Return	Deviation	Cou	untry					
5	EWD	15.5393	26.4868	Swe	eden					
6	EWH	6.3852	41.1475	Hong Kong						
7	EWI	26.5999	26.0514	Italy						
8	EWJ	1.4133	26.0709	Japan						
9	EWL	18.0745	21.6916	Switzerland						
10	EWP	18.6347	25.0779	Spain						
11	EWW	16.2243	38.7686	Mexico						
12	S&P 500	17.2306	17.1944							